19 research outputs found

    Changing white into brite adipocytes. Focus on >BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells>

    Get PDF
    Editorial.This review was supported by Grants S2010/BMD-2423 from Comunidad de Madrid and SAF2012-32491 from MINECO (Ministerio de Economia y Competitividad), Spain (to M.-J. Obregon).Peer Reviewe

    Mucin binding reduces colistin antimicrobial activity

    Get PDF
    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance

    There is no market for new antibiotics: this allows an open approach to research and development

    Get PDF
    There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a “market” to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New “open source” research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner

    Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies

    Get PDF
    Alternative solutions need to be developed to overcome the growing problem of multi-drug resistant bacteria. This study explored the possibility of creating complexes of antibiotics with metal ions, thereby increasing their activity. Analytical techniques such as isothermal titration calorimetry and nuclear magnetic resonance were used to examine the structure and interactions between Cu(II), Ag(I) or Zn(II) and β-lactam antibiotics. The metal-β-lactam complexes were also tested for antimicrobial activity, by micro-broth dilution and disk diffusion methods, showing a synergistic increase in the activity of the drugs, and enzymatic inhibition assays confirming inhibition of β-lactamases responsible for resistance. The metal-antibiotic complex concept was proven to be successful with the activity of the drugs enhanced against β-lactamase-producing bacteria. The highest synergistic effects were observed for complexes formed with Ag(I)

    Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds

    Get PDF
    New antibiotics are urgently needed to address increasing rates of multidrug resistant infections. Seventy-six diversely functionalized compounds, comprising five structural scaffolds, were synthesized and tested for their ability to inhibit microbial growth. Twenty-six compounds showed activity in the primary phenotypic screen at the Community for Open Antimicrobial Drug Discovery (CO-ADD). Follow-up testing of active molecules confirmed that two unnatural dipeptides inhibit the growth of Cryptococcus neoformans with a minimum inhibitory concentration (MIC) ≤ 8 μg/mL. Syntheses were carried out by undergraduate students at five schools implementing Distributed Drug Discovery (D3) programs. This report showcases that a collaborative research and educational process is a powerful approach to discover new molecules inhibiting microbial growth. Educational gains for students engaged in this project are highlighted in parallel to the research advances. Aspects of D3 that contribute to its success, including an emphasis on reproducibility of procedures, are discussed to underscore the power of this approach to solve important research problems and to inform other coupled chemical biology research and teaching endeavors

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The diminished antimicrobial pipeline

    No full text
    Australians love antibiotics, with one of the highest rates of human antibiotic usage in the world. Unfortunately, they are being loved to death, as high rates of inappropriate use, both here and around the globe, are contributing to the rise of drug-resistant bacteria against which our current arsenal of antibiotics is becoming increasingly ineffective. In the past, advancements in developing new antibioticskept pace with developing resistance, but we are now facing a deadly realitywhere the pipeline of 'new and improved' antibiotics is rapidly drying up. There are a number of global initiatives attempting to reprime the pipeline, but the exit of major pharmaceutical companiesfrom antibiotic research and the poor financial performance of antibiotic-focused biotechnology companies continues

    The eagle effect and antibiotic-induced persistence: two sides of the same coin?

    No full text
    The Eagle effect describes a phenomenon in which bacteria or fungi exposed to concentrations of antibiotic higher than an optimal bactericidal concentration (OBC) have paradoxically improved levels of survival than at the OBC due to a decreased net rate of cell death. Despite extensive observational reports of this effect in different microorganisms, its underlying mode of action is not well understood. Although aspects of the Eagle effect resemble persistence, there is strong evidence that these phenomena are substantially different phenotypic responses to antibiotic treatment. We present an overview of the microorganism and antimicrobial combinations in which the Eagle effect has been observed. Proposed underlying mechanism(s) are assessed, and the Eagle effect and microbial persistence are compared and contrasted. The clinical relevance of the Eagle effect is reviewed, incorporating evidence from experimental in vitro and in vivo studies, as well as clinical reports

    Clostridium difficile drug pipeline: challenges in discover and development of new agents

    No full text
    In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization
    corecore